If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=10^11
We move all terms to the left:
4x^2-(10^11)=0
We add all the numbers together, and all the variables
4x^2-100000000000=0
a = 4; b = 0; c = -100000000000;
Δ = b2-4ac
Δ = 02-4·4·(-100000000000)
Δ = 1600000000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1600000000000}=\sqrt{160000000000*10}=\sqrt{160000000000}*\sqrt{10}=400000\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-400000\sqrt{10}}{2*4}=\frac{0-400000\sqrt{10}}{8} =-\frac{400000\sqrt{10}}{8} =-50000\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+400000\sqrt{10}}{2*4}=\frac{0+400000\sqrt{10}}{8} =\frac{400000\sqrt{10}}{8} =50000\sqrt{10} $
| -5m+16=8m-2(1+8m) | | -7(x-5)=28-8x | | 2x+7=9+x | | -2x+14=-10 | | 4x-6x-3x=40-12 | | 8u+6(u+3)=32 | | 5-4a=2a | | –4j+–3=13 | | y-5.1=9.6 | | 0.246=-9E-08x2+0.0006x-0.0076 | | 2=s/5-2 | | u+5.25=8.96 | | 35+3x=5 | | 2=s/5−2 | | 5(2+3x)-8x=8x+4-x | | 10^(x+11)=19 | | 19x-7=13x-5 | | 10^x+11=19 | | n(n−4)=−32(7) | | 8-6(8+6b)=176 | | 4=7u-3u | | 2x^2+4x-0.16=0 | | 0.5x-0.75=0.125x-0.25 | | y/2−2=1 | | Y^2-20y=8 | | x^2+4x-0.16=0 | | 3.5=(1.1)^n | | –18−11c=–18+4c−15c | | 2x-3x-x=6-2-6 | | –1−4g=–4g−1 | | 3+y=10+2y | | 2(4x+7)=49+39 |